Cyanide induces different modes of death in cortical and mesencephalon cells.
نویسندگان
چکیده
A comparative study was conducted in rat primary cortical (CX) and mesencephalic (MC) neurons to investigate intracellular cascades activated during cyanide-induced injury and to determine the point at which the cascades diverge to produce either apoptosis or necrosis. Cyanide treatment (400 microM) for 24 h produced primarily apoptosis in CX cells, whereas the same concentration of cyanide induced predominantly necrosis in MC cells as indicated by increased propidium iodide staining and cellular lactate dehydrogenase efflux. Cyanide increased generation of cellular reactive oxygen species (ROS) in both CX and MC cells, but the rate of formation and nature of the oxidative species varied with cell type. Catalase decreased cyanide-induced ROS generation in CX but not in MC cells. Nitric oxide generation was more prominent after cyanide treatment of MC compared with CX cells. N-Methyl-D-aspartate receptors were more involved in CX apoptosis than in MC necrosis. Mitochondrial membrane potential decreased moderately in CX cells on exposure to cyanide, whereas MC cells responded with a more pronounced reduction in potential. In CX cells cyanide produced a concentration-dependent release of cytochrome c from mitochondria and increased caspase activity, whereas little change was seen in MC neurons. Thus, cyanide-induced necrosis of MC cells involved generation of excessive amounts of nitric oxide and superoxide accompanied by mitochondrial depolarization. In contrast cyanide causes a lower level of oxidative stress in CX cells, involving mainly hydrogen peroxide and superoxide, and a moderate change in mitochondrial membrane potential that lead to cytochrome c release, caspase activation, and apoptosis.
منابع مشابه
Expressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis
Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملHomocysteine intracerebroventricular injection induces apoptosis in the Substantia Nigra cells and Parkinson like behavior in rat
Parkinson's disease is a degenerative disorder of the central nervous system. The motor symptoms of Parkinson's disease result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain the cause of this cell death is unknown. Homocysteine (Hcy) is a non-protein amino acid. It is a homologue of the amino acid cysteine. The elevated levels of homocysteine in p...
متن کاملOpium induces apoptosis in Jurkat cells via promotion of pro-apoptotic and inhibition of anti-apoptotic molecules
Objective(s): The aim of this study was to determine the important molecules involved in apoptosis induction by opium in Jurkat cell line. Materials and Methods: Jurkat cells were incubated 48 hrs with2.86×10-5 g/ml concentration of opium and apoptosis as well as expression levels of related molecules weremeasured. Results: Our results demonstrated that 50.3±0.2 percent of opium treated Jurka...
متن کاملUranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane potential collapse in the Human Dermal Fibroblast Primary Cells
Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 303 2 شماره
صفحات -
تاریخ انتشار 2002